

Page 1

Page 2

 Contents

Contents .. 2

EtherNet/IP™ .. 3

Register Interface Object .. 4

Class Code: 0x65 (101) .. 4

Services ... 5

Behavior .. 10

EXAMPLES ... 10

Setup I-Mark for EtherNet/IP Communication ... 12

Step 1: Controller Setup .. 12

Step 2: Create a Layout with EtherNet/IP placeholder ... 15

Step 4: Set Layout as active layout for marking. ... 17

Step 4: Save and download the configuration to the controller. ... 18

I-Mark Register Mapping .. 19

Output Control Register: ... 20

Writing Marking Data to the I-Mark Controller: ... 21

Establishing Communication with RSLogix 5000 .. 23

Step 1: Create a new RSLogix 5000 project .. 23

Step 2: Connect to the PLC using RSLogix 5000 .. 23

Step 3: Assign IP addresses ... 24

Step 4: Verify EtherNet/IP communication .. 27

Register Interface Example with RSLogix 5000 ... 31

Overview ... 31

Step 1: Programming the PLC side with RSLogix... 32

Step 2: Demonstration .. 36

Page 3

EtherNet/IP™

CMT's EtherNet/IP™ option interfaces with I-Mark controller and the various ODVA

Common Industrial Protocol (CIP™) objects that are used. It is intended only for users

who have a working knowledge of the ODVA CIP and EtherNet/IP specifications. It is

not intended to be used to learn about EtherNet/IP networks or protocol.

This option is available when purchased with an I-Mark Machine

The I-Mark Controller supports the following EtherNet/IP Interface Object:

LINK TO SAMPLE CODE

Page 4

 Register Interface Object

Class Code: 0x65 (101)

The register interface allows access to the controller's Integer and Double Registers

through EtherNet/IP™. This provides a flexible, general-purpose interface between the

controller and EtherNet/IP that can be adapted to many different applications.

Attributes

Class Attributes

Instance Attributes

• Instance 0x01 is mapped to the controller's Integer Registers.

• Instance 0x02 is mapped to the Double Registers.

Number Access

Rule

Name Data

Type

Description

0x64

(100)
Get

Number of

Registers
DINT

Returns the number of

registers in this set.

0x65

(101)
Get Register Size DINT

Returns the size of each

register, in bytes.

0x66

(102)

Get Register Set Base

Address

DINT Returns the 32-bit base

memory address of the

register set.

0x67

(103)

Get Register Set Mutex DINT Returns the mutex number

associated with the register

set.

Page 5

Services

Common Services

Service

Code
Name Description

0x0E (14)
Get

_Attribute_Single
Returns the contents of the specified attribute.

Object-Specific Services

Service

Code
Name Description

0x32 (50) Read_Single_Register Read the contents of a single register.

Service

Code
Name Description

0x33 (51) Write_Single_Register
Write the contents of a single register.

0x34 (52) Read_Multiple_Registers
Read the contents of a series of registers.

0x35 (53) Write_Multiple_Registers
Write the contents of a series of registers.

Page 6

 Read_Single_Register Instance Service

Table: Service Parameters

Name Type Description

Register

Number
DINT The number of the register to be read.

Table: Service Response Data

Name Type Description

Status Code DINT

0
The operation completed successfully

1
The operation could not be performed because of invalid

register numbers.

2
Invalid service request format.

Register

Contents

Variable
 The value of the register.(1) (3)

Page 7

Write_Single_Register Instance Service

Table: Service Parameters

Name Type Description

Register

Number
DINT The number of the register to be written.

New Register

Value

Variable
 The new register value to be written.

Table: Service Response Data

Name Type Description

Status

Code
DINT 0

The operation completed successfully

Name Type Description

1

The operation could not be performed because of invalid register

numbers.

2
Invalid service request format.

Page 8

Read_Multiple_Register Instance Service

Table: Service Parameters

Name Type Description

Start Register

Number

DINT
The number of the first register to be read. Must be less than

the End Register Number.

End Register

Number

DINT
The number of the last register to be read. Must be greater

than the Start Register Number.

Table: Service Response Data

Name Type Description

Status Code DINT

0
The operation completed successfully

1
The operation could not be performed because of invalid

register numbers.

2
Invalid service request format.

Register

Contents

Variable
 The value of the register.(2) (3)

Page 9

Write_Multiple_Register Instance Service

Table: Service Parameters

Name Type Description

Start Register

Number

DINT
The number of the first register to be written. Must be less

than End Register Number.

End Register

Number

DINT
The number of the first register to be written. Must be

greater than Start Register Number.

New Register

Number

Variable
 The new register values to be written.

 Table: Service Response Data

Name Type Description

Status

Code
 DINT

0
The operation completed successfully

1
The operation could not be performed because of invalid register

numbers.

2
Invalid service request format.

(1) The values that are read and written to registers have the size specified by the Register Size attribute for that instance. For instance 0x01

(Integer Registers) and instance 0x02 (Double Registers) the values are 32 bits wide.

(2) When reading and writing a series of registers, the values are specified in order, end-to-end.

(3) This data is not returned unless the status code is zero (the operation completed successfully).

Page 10

Behavior

The register interface instance services allow the reading and writing of the controller's

Integer and Double Registers over EtherNet/IP. Data consistency is guaranteed

internally, so you can access these registers simultaneously through EtherNet/IP with

Multiple connections.

For compatibility with third-party PLC programming software, values read from and

written to the Double Registers are limited to 32-bit single-precision floating point

values. When reading a Double Register, the 64-bit double-precision floating point

value is rounded to a 32-bit single-precision floating point value when it is returned

through the Register

Interface Object. The I-Mark controller utilizes only the 32-bit Integer Registers for

control via EtherNet/IP

EXAMPLES

1. EtherNet/IP request to write the value 1 (Start Marking) to Integer Register (298),

which is the Input Control Register:

1. Service: 0x33 (Write_Single_Register)

2. Class: 0x65 (Register Interface Object)

3. Instance: 0x01 (Instance 1 maps to Integer Registers)

4. Attribute: 0x01 (Normal Writing Method)

5. Request Data (Register Number, New Register Value): 0x00, 0x01, 0x00, 0x00,

0x0A, 0x00, 0x00, 0x00

6. Response Data: (Status Code: Invalid Register): 0x01, 0x00, 0x00, 0x00

Note: Based on this Example, you can see we are using 2 words only for this packet

instruction.

2. EtherNet/IP request to read the value of a Single Integer Register (299); which is

the output Control Register:

1. Service: 0x33 (Read_Single_Register)

2. Class: 0x65 (Register Interface Object)

3. Instance: 0x01 (Instance 1 maps to Integer Registers)

Page 11

4. Attribute: 0x01 (Normal Writing Method)

5. Request Data (Integer Register Number): 0x12, 0x0B, 0x00, 0x00

6. Response Data (Status Code, Register Values): 0x00, 0x00, 0x00, 0x00, 0x02,

0x00, 0x00, 0x00

Note: Based on this Example the Controller is reporting back that it is currently Marking

(Value of 2)

For sending data to the controller to be marked in a placeholder, the following would be

the example

2. EtherNet/IP request to write the values 512 and 1024 to IntegerRegisters (300) and

(301):

1. Service: 0x35 (Write_Multiple_Registers)

2. Class: 0x65 (Register Interface Object)

3. Instance: 0x01 (Instance 1 maps to Integer Registers)

4. Attribute: 0x01 (Normal Writing Method)

5. Request Data (Start Register Number, End Register Number, Register Values):

0xFF, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00,

0x04, 0x00, 0x00

6. Response Data: (Status Code): 0x00, 0x00, 0x00, 0x00

7. Note that you need a single 32-bit word for each of the registers you are sending

data to within the I-Mark Controller. Each Integer register is capable of 4

characters of information. So if you wanted the marking to print "ABCD" you

would only need to send to 1 register (300) with 1 word of data after converting

the ABCD ASCII into integer on the PLC side first.

Page 12

Setup I-Mark for EtherNet/IP Communication

 Step 1: Controller Setup

The I-Mark controller will monitor the register 298 as our Input Control Register which

allows you to remotely control the marking machine. Likewise for our Output status,

the I-Mark controller (when configured for Ethernet/IP) will write an integer value to the

register 299 as our current status. What we have in our software is a screen which

allows you to map what functions you want to the different I/O bits within the program.

After you connect up to the controller (Home Tab Connect to Marking Machines), the

controller will show up under the Navigation pane on the lower left side of the software.

You can double click on controller listed in here or if you select it, the Ribbon menu

across the top will change to this controller specifically and you can select “Open

Marking Machine”. With this screen you can modify the parameters of the machine as

well as get the full status and live feed of what the machine is doing.

1. With the ribbon still highlighted on your controller page, there is an icon which looks

like a Green and Red arrow

opposing each other….

Page 13

This button will open up a dialog to allow you to configure the I/O’s of this controller.

This dialog will allow you to map the function listed to the left with the desired I/O index

number and medium you would like to control it with. So for your configuration, you

are going to go through each of these items and change their “Type” to Ethernet/IP

and then make sure the index number below it is unique.

Page 14

 A basic setup should look like this chart here.

 Inputs Outputs

Start EtherNetIP: 0 Binary 1 Ready EtherNetIP: 0

Reset EtherNetIP: 1 Binary 2 Marking EtherNetIP: 1

Select 1 EtherNetIP: 2 Binary 4 Completed EtherNetIP: 2

Select 2 EtherNetIP: 3 Binary 8 Fault EtherNetIP: 3

Select 3 EtherNetIP: 4 Binary 16

Select 4 EtherNetIP: 5 Binary 32

Select 5 EtherNetIP: 6 Binary 64

3. Once you have configured it to be this way, press OK to apply and save this

configuration to the workspace.

Page 15

Step 2: Create a Layout with EtherNet/IP placeholder

1. Go back to the Home tab and click “Create New Layout”. It will ask you what

type of machine you want to create a layout for, if you’re directly connected to the

machine there will only be 1 listed there (IM_ID60) just select this and click OK.

2. Now you can see the Layout which appears to look like a grid, this is the physical

marking window for the machine. To add a new text object which will print data

received from the PLC over Ethernet/IP, click on the “Layout” tab at the top and single

click on the button which says “Text”.

This button will drop a text entity into the center of the layout which reads simply

“Text”. You modify this entity by double clicking on it which opens up a new dialog for

editing the text entity. Delete the sample “Text” in the top field and then look down at

the different codes available for dynamic data. One of the codes is labeled

“Placeholder Text

(Register/Ethernet/IP)”. You can click directly on this text or type in %p0 to the Text to

Mark field as shown here.

Page 16

 Now press Accept to apply the change to the Text entity. The text within the layout

will say “Global Register Text 0" as this is just a simulation to illustrate that we are

waiting for data to appear in order to mark it here because the register at this time is

empty.

Step 3: Assign Layout to the controller.

1. Click directly on the layout to activate the layout tab on the ribbon,

2. Click on the button labeled "Assign to Machine"

Page 17

 Click on the machine listed below this button which corresponds to the name of the

machine you're currently working with. This will assign the currently layout to this

machine so when a download occurs it will synchronize.

3. Save the Layout by going to the "Home" tab and select "Save Layout"

Step 4: Set Layout as active layout for marking.

 1. Click the tab on the toolbar named after the controller you are working on. On

this ribbon will be a button called "Layouts" click it

 Clicking this button will open

up a dialog for you to assign

layouts to a specific binary

assignment. Set the layout

you just created as the

Page 18

 Step 4: Save and download the configuration to the controller.

1. Navigate to the Setup and Control tab within the Controller Page.

2. Click on the Download button to save all of your Layouts and configuration to the

controllers memory.

3. After the progress completes, you may now disconnect from I-Mark.

Page 19

I-Mark Register Mapping

Input Control Register:

The I-Mark controller uses the Integer Register number 298 as the dedicated Input

Control Register for the marking machine. This register is checked once every 1ms

and executes the command mapped to the binary value(s) found in it. In the section

"I-Mark Register Mapping", we explained how to setup your input and output

functions for EtherNet/IP and their Binary Index.

Taking that example below is a chart illustrating a standard mapping of I/O for

EtherNet/IP.

 Inputs Outputs

Start EtherNetIP:

0

Binary 1 Ready EtherNetIP:

0

Reset EtherNetIP:

1

Binary 2 Marking EtherNetIP:

1

Select 1 EtherNetIP:

2

Binary 4 Completed EtherNetIP:

2

Select 2 EtherNetIP:

3

Binary 8 Fault EtherNetIP:

3

Select 3 EtherNetIP:

4

Binary 16

Select 4 EtherNetIP:

5

Binary 32

Select 5 EtherNetIP:

6

Binary 64

To execute the function assigned to the binary index, perform a bitwise calculation and

enter the Sum of the binary values into the Input Control Register. The next time this

Page 20

register is polled by the controller for its value, the controller will execute the

command(s) requested.

Example: To tell the controller to "Start" marking, write the value of 1 to the Input

Control Register. Then when the register is polled for its value, the controller will

initiate the marking sequence for the layout assigned to "0" in the previous section.

Example 2: If you have assigned multiple layouts to Select Number using the Layouts

dialog, put the value of 1 for "Start" command plus the value of 4 for the Select 1

command. So the Input Control Register will have the integer number 5 commanding

the marker to Start marking using Select 1.

When a new packet of data is sent to this register it will clear the previous out first

before writing the new value into it. It is a good practice to write the value of 0 into the

register after the marker has started/finished the command. If the register contains the

"Start" command, the marker will not return to home until the register is brought back

to 0 as it is trying to execute a "Start" each time the register is scanned. After you

have sent the packet of data to the Marker, it will provide a response back (See

Register Interface Object section), using this Response packet in the PLC as a trigger

to send a new MSG instruction containing the value of 0 to the I-Mark controllers Input

Control Register is recommended.

Output Control Register:

 The Output Control Register will function in a similar manner to the Input Control

Register. The marking controller will provide a status in the form of a Bitwise

calculation which can be read by the PLC for current marker status. Like the Input

Control Register, the output will likewise be updated at a frequency of 1ms depending

on the current process being executed on the I-Mark Controller.

Page 21

 Example: Using the chart above, when the marking controller is in a Ready state, the

register 299 will contain the value of

1. Similarly if there is a fault within the marking controller, the value of 8 will be present

in the Output Control register.

Writing Marking Data to the I-Mark Controller:

 The I-Mark controller will accept ASCII integer values in specified placeholder

registers to be used as marking data for your layout. These registers are global which

allows them to be used in multiple layouts without outside intervention. The I-Mark

memory utilized 32-bit integer registers to hold this marking data similar to the Input

and Output Control

Registers. Within the I-Mark software itself you can create an entity known as a

"Placeholder" which will utilize this

local data to be marked within the

layout. The place holder is capable

of a maximum 80 characters of

information with each character

using 8 bits or 1 byte of data.

Remembering that our registers can

hold 32-bits of information, each

placeholder would occupy a total of

20 Integer Registers for holding that

data. The I-Mark software allocates

these Integer Registers for the

assigned placeholders in the follow

locations.

Placeholder

%p0 Register. 300-319 Placeholder 0

%p1 Register. 320-339 Placeholder 1

%p2 Register. 340-359 Placeholder 2

%p3 Register. 360-379 Placeholder 3

%p4 Register. 380-399 Placeholder 4

%p5 Register. 400-419 Placeholder 5

%p6 Register. 420-439 Placeholder 6

%p7 Register. 440-459 Placeholder 7

%p8 Register. 460-479 Placeholder 8

%p9 Register. 480-499 Placeholder 9

Page 22

Once the layout which utilizes any of these registers is executed, the I-Mark controller

will look at the value of the corresponding register and print what was found within it. If

a register is programmed within a layout but does not contain any data, there will be a

corresponding error message within the controller producing a Fault (Output Control

Register Bit 8).

Page 23

Establishing Communication with RSLogix 5000

This procedure provides an example of how to establish EtherNet/IP communication

between a PLC (programmed via RSLogix 5000) and an I-Mark controller. Note that

your setup procedure may differ depending on the particular PLC and version of

RSLogix that you are using. As always, the user must be certain that conditions are

safe before downloading changes to the PLC, and that any existing logic on the PLC is

backed up before it is overwritten.

Step 1: Create a new RSLogix 5000 project

1. Open RSLogix 5000.

2. Create a new project by going to File → New.

a. Select the appropriate controller type and revision.

b. Specify a name for the controller and click OK.

Step 2: Connect to the PLC using RSLogix 5000

1. After verifying that it is safe to do so, switch the PLC into programming mode.

2. In RSLogix 5000, select the communications path to the PLC.

a. Go to Communications → Who Active.

b. Highlight the PLC in the communications tree and click Go Online.

Page 24

c. You may be prompted that the open project (the one we just created) does not

match the project in the controller. We are going to download the new project to

the controller. This will erase the existing logic on the PLC. If this is OK, click

Download.

d. The online toolbar in RSLogix 5000 will indicate that the PLC is now online.

 e. Use the online toolbar to go offline.

Step 3: Assign IP addresses

Assign an IP address to the EtherNet/IP module on the PLC. The following example is

for a CompactLogix L43 controller with a 1768-ENBT/A EtherNet/IP module. A static IP

address is used for this example.

Page 25

In the controller organizer, right click on the bus that carries the EtherNet/IP module and

select New Module.

Choose the appropriate module and click OK.

Enter a name and description for the module, uncheck Open Module Properties and

click OK.

Page 26

Go online, downloading offline changes as necessary.

In the controller organizer, right click on the EtherNet/IP module and select Properties.

Click on the Port Configuration tab in the module properties. Configure the IP address

and other network settings, and then click Set. Click OK to exit the module properties

window.

Page 27

1. Assign an IP address to the I-Mark controller. A static IP address is used for this

example.

a. Controllers Properties Page.

b. Locate the Data section within the properties.

c. Double click to specify the network settings and press ENTER.

Step 4: Verify EtherNet/IP communication

This step will guide you through the creation of a basic PLC program to test the

EtherNet/IP communication with the IMark controller.

1. Go offline in RSLogix 5000.

2. In the controller organizer, right click on Controller <name> → Controller Tags and

select Edit Tags. a. Create the tags shown:

Page 28

3. In the controller organizer, right click on Tasks → MainTask → MainProgram →

MainRoutine and select Open. An empty ladder diagram will be displayed.

4. Add the following elements to the rung: Examine If Closed (XIC), One Shot (ONS)

and Message (MSG).

5. Set the operands as follows:

a. Examine If Closed (XIC): sendMessage

b. One Shot (ONS): sendMessageStorage

c. Message (MSG): eipMessage

Page 29

6. Click the ellipses button on the MSG instruction to configure the EtherNet/IP

message. Configure the message as follows:

a. Configuration Tab

1 Service Code: E

2 Class: 1

3 Instance:1

4 Attribute: 1

5 Source Length: 0

6 Destination: vendorID

b. Communication Tab

1 Path: eipModule, 2,

192.168.1.2

c. Click OK.

7. Go online, downloading offline changes as necessary.

8. Once the project has been downloaded, switch the PLC into run or remote run

mode.

9. Right click on the XIC element in the ladder diagram and select Toggle Bit. This will

activate the rung and trigger the MSG block to send the EtherNet/IP message.

Page 30

10. Once the DN output from the MSG block is active, return to the controller organizer,

right click on Controller <name> → Controller Tags and select Monitor Tags. The

vendorID tag should now have the value 935 (the EtherNet/IP vendor ID for CMT,

Inc). You have now verified the EtherNet/IP communication between the PLC and

controller.

Page 31

Register Interface Example with RSLogix 5000

This example demonstrates how the EtherNet/IPTM Register Interface object can be

used to exchange arbitrary data between the PLC and I-Mark controller. Please read

the Establishing Communication with RSLogix 5000 document and verify the

EtherNet/IPTM communication with the controller before proceeding. It would also be

very beneficial to read the Register Interface Object topic in the controller help file

before continuing. You may create a new RSLogix 5000 project for this example

application or continue to build on an existing project. As always, the user must be

certain that conditions are safe before downloading changes to the PLC, and that any

existing logic on the PLC is backed up before it is overwritten.

Overview

This example application demonstrates how the Register Interface object can be used

to exchange data and "trigger" the execution of some process on the controller. It

involves some basic logic on the PLC (programmed via RSLogix 5000). Although this

example is fairly simplistic, the programming concepts employed are extensible to

much more complex applications.

For this example, the I-Mark controller will execute a programmed Layout when

commanded by the PLC. The operands are specified on the PLC and passed to the

controller. The controller stores the result in its register space, and the PLC reads the

value back through the Register Interface.

Two EtherNet/IP messages are required for this application: one message to send the

operands and trigger the behavior on the controller, and a second message to read the

result back into the PLC. Since simple integers are needed to be passed to the

controller, we want to use the Write_Single_Registers service of the Register Interface

object for the first message. A single result value is read back into the PLC, so a

Read_Single_Register service may be used for the second message.

Page 32

 Step 1: Programming the PLC side with RSLogix

1. Configure the necessary controller tags for the Write_Single_Register message.

a. Create controller tags named wsrServiceSend and wsrServiceSendStorage of

type BOOL; these will be used in the ladder diagram to control when the

Write_Single_Register message is sent.

b. We need tags for the operands, a code to specify the requested operation, and a

flag to instruct the controller to perform the marking.

i. Create a controller tag named operandA

of type DINT. ii. Create a controller tag

named operandB of type DINT. iii.

Create a controller tag named operation

of type DINT.

iv. Create a controller tag named executeFlag of type DINT.

c. We need a tag to hold the service data for the Write_Single_Register service.

The service data for the

Write_Single_Register service are 1) the starting register number (32 bits), 2)

the new register values to write (32 bits). For our message, this is a total of two

32-bit words. Create a controller tag named wsrServiceData of type DINT[4].

d. For convenience, we can alias the other controller tags so they map directly into

the service data tag.

i. Set controller tag operandA as an alias

for wsrServiceData[2].

ii. Set controller tag operandB as an alias

for wsrServiceData[3]. iii. Set controller

tag operation as an alias for

wsrServiceData[4].

Page 33

iv. Set controller tag executeFlag as an alias for wsrServiceData[5].

e. The Write_Single_Register service returns a 32-bit status code. Create a

controller tag named wmrReponseData of type DINT to hold this value.

f. Finally, a MESSAGE tag must be created; create a controller tag named

wsrServiceMessage of type MESSAGE.

2. Configure the necessary controller tags for the Read_Single_Register message.

a. Create controller tags named rsrServiceSend and rsrServiceSendStorage of type

BOOL; these will be used in the ladder diagram to control when the

Read_Single_Register message is sent.

b. We need a tag for the result value that will be read back from the controller.

Create a controller tag named result of type DINT.

c. We need a tag to hold the service data for the Read_Single_Register service.

The service data for the

Read_Single_Register service consists only of the register number to be read

(32 bits). Create a controller tag named rsrServiceData of type DINT.

d. The Read_Single_Register service returns a 32-bit status code followed by the

contents of the register in another 32-bit register. Create a controller tag named

rsrReponseData of type DINT[2] to hold these values.

e. For convenience, we can alias the result controller tag so it maps directly into the

service response data tag. Set controller tag result as an alias for

rsrResponseData[1].

f. Finally, a MESSAGE tag must be created; create a controller tag named

rsrServiceMessage of type MESSAGE.

In summary:

Page 34

3. Create the logic to send the Write_Single_Register service to the controller:

a. Add the following example rung to your ladder diagram:

2. When wsrServiceSend is activated, the specified message is sent. We want this

to be our Write_Single_Register message, so configure the MSG block as

follows:

1. Configuration Tab

1. Service Code: 33 (Write_Single_Register)

2. Class: 65 (Register Interface Object)

3. Instance: 1 (IntegerRegisters)

4. Attribute: 1 (Normal Mode)

5. Source Element: wsrServiceData

6. Source Lenght: 16

Page 35

7. Destination: wsrResponseData

2. Communication Tab

1. Path: eipModule, 2, 192.168.1.2 (or the appropriate path to your

EtherNet/IP module)

4. Create the logic to send the Read_Single_Register service to the controller:

1. Add the following rung to your ladder diagram:

2. When rsrServiceSend is activated, the specified message is sent. We want this

to be our Read_Single_Register message, so configure the MSG block as

follows:

1. Configuration Tab

1. Service Code: 32 (Read_Single_Register)

2. Class: 65 (Register Interface Object)

3. Instance: 1 (IntegerRegisters)

4. Attribute: 1 (Normal Write Mode)

5. Source Element: rsrServiceData

6. Source Length: 4

7. Destination: rsrResponseData

2. Communication Tab

1. Path: eipModule, 2, 192.168.1.2 (or the appropriate path to your

EtherNet/IP module)

Page 36

Step 2: Demonstration

a. Set a Marking Layout as assigned to 0 on the I-Mark controller.

b. Download the RSLogix 5000 project to the PLC. Switch the PLC into a run mode.

c. Set the register number values in the service data tags for the

Write_Single_Register and Read_Single_Register messages.

a. Set wsrServiceData[0] (starting register number for Write_Single_Register) to 0.

b. Set rsrServiceData (register number for Read_Single_Register) to 4.

d. Set values for the operandA and operandB tags. Set the value of the operation tag

to 0 for addition or any other value for multiplication. Set the value of the

executeFlag tag to 1.

e. Change the value of the wsrServiceSend tag from 0 to 1. This will energize its rung

in the ladder diagram and cause the Write_Single_Register message to be sent to

the controller.

f. Check the value of the wsrResponseData tag. It should be zero, indicating that the

operation completed successfully.

g. Change the value of the rsrServiceSend tag from 0 to 1. This will energize its rung in

the ladder diagram and cause the Read_Single_Register message to be sent to the

controller.

h. Check the value of the rsrResponseData tag. rsrResponseData[0] should be zero,

indicating that the operation completed successfully. result will contain the result

value obtained from the controller.

i. To send additional messages, change the value of the corresponding "ServiceSend"

tag to zero, wait for the

"ServiceSendStorage" tag to become zero, and then return the ServiceSend tag to

one. A message is only sent on a rising edge of the corresponding "ServiceSend"

signal.

